Tuesday, December 28, 2010

Antimatter Created Trapped and Studied

The ALPHA experiment at CERN1 has taken an important step forward in developing techniques to understand one of the Universe's open questions: is there a difference between matter and antimatter? In a paper published in Nature today, the collaboration shows that it has successfully produced and trapped atoms of antihydrogen. This development opens the path to new ways of making detailed measurements of antihydrogen, which will in turn allow scientists to compare matter and antimatter.


Antimatter - or the lack of it - remains one of the biggest mysteries of science. Matter and its counterpart are identical except for opposite charge, and they annihilate when they meet. At the Big Bang, matter and antimatter should have been produced in equal amounts. However, we know that our world is made up of matter: antimatter seems to have disappeared. To find out what has happened to it, scientists employ a range of methods to investigate whether a tiny difference in the properties of matter and antimatter could point towards an explanation.
One of these methods is to take one of the best-known systems in physics, the hydrogen atom, which is made of one proton and one electron, and check whether its antimatter counterpart, antihydrogen, consisting of an antiproton and a positron, behaves in the same way. CERN is the only laboratory in the world with a dedicated low-energy antiproton facility where this research can be carried out.


Antihydrogen atoms are produced in a vacuum at CERN, but are nevertheless surrounded by normal matter. Because matter and antimatter annihilate when they meet, the antihydrogen atoms have a very short life expectancy. This can be extended, however, by using strong and complex magnetic fields to trap them and thus prevent them from coming into contact with matter. The ALPHA experiment has shown that it is possible to hold on to atoms of antihydrogen in this way for about a tenth of a second: easily long enough to study them. Of the many thousands of antiatoms the experiment has created, ALPHA's latest paper reports that 38 have been trapped for long enough to study.
 Antimatter cannot exist in the presence of or in contact with matter. To create and isolate enough antimatter to study  is a remarkable achievment.

No comments:

Post a Comment

Through this ever open gate
None come too early
None too late
Thanks for dropping in ... the PICs